【力扣刷题】150. 逆波兰表达式求值-栈与队列
给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] 输出:22 解释:该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
提示:
1 <= tokens.length <= 104
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
class Solution {
public:
using ll=long long;
int evalRPN(vector<string>& tokens) {
stack<string>st;
ll ans=0;
for(string s:tokens){
if(s!="+"&&s!="-"&&s!="*"&&s!="/"){
st.push(s);
}else{
ll a=stol(st.top());
st.pop();
ll b=stol(st.top());
st.pop();
ll tmp=0;
if(s=="+"){
tmp=a+b;
}else if(s=="-"){
tmp=b-a;
}else if(s=="*"){
tmp=a*b;
}else{
// 向零截断就是向零取整
tmp=b/a;
}
cout<<tmp<<endl;
st.push(to_string(tmp));
}
}
ans=stol(st.top());
return ans;
}
};
版权声明:
作者:Zhang, Hongxing
链接:http://zhx.info/archives/578
来源:张鸿兴的学习历程
文章版权归作者所有,未经允许请勿转载。
THE END
二维码
文章目录
关闭